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SUMMARY

With more and more enterprises sharing their sensitive data on cloud servers, building
a secure cloud environment for data sharing has attracted a lot of attention in both
industry and academic communities. In this paper, we propose a conjunctive precise
and fuzzy identity-based encryption (PFIBE) scheme for secure data sharing on cloud
servers, which allows the encryption of data by specifying a recipient identity (ID) set,
or a disjunctive normal form (DNF) access control policy over attributes, so that only
the user whose ID belonging to the ID set or attributes satisfying the DNF access
control policy can decrypt the corresponding data. Our design goal is to propose a
novel encryption scheme, which simultaneously achieves a fine-grained access control,
flexibility, high performance, and full key delegation, so as to help enterprise users to
enjoy more secure, comprehensive, and flexible services. We achieve this goal by first
combining the hierarchical identity-based encryption (HIBE) system and the ciphertext-
policy attribute-based encryption (CP-ABE) system, and then marking each user with
both an ID and a set of descriptive attributes, finally separating the access control policy
into two parts: a recipient ID set and a DNF attribute-based access control policy.
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1. INTRODUCTION

Cloud computing [1], as one of current most exciting technology areas, denotes an architectural
shift towards thin clients and scalably centralized provision of computing and storage resources
on-demand. By combining emerging techniques, such as virtualization and service-oriented
computing, three types of servers are available in a pay-as-you-go manner, i.e., infrastructure
as a service (IaaS), where users make use of a cloud service provider’s (CSP’s) computing,
storage, and networking infrastructure to deploy any arbitrary software, e.g., Amazon EC2;
platform as a service (PaaS), where users deploy user-created or acquired applications written
with programming languages and tools supported by CSPs, e.g., Microsoft Windows Azure;
and software as a service (SaaS), where users make use of CSPs’ software running on a cloud
infrastructure, e.g, Google Docs.

Obviously, moving data into a cloud offers great convenience to users since they can access
data in a cloud anytime and anywhere, using any device, without caring about the large capital
investment in both the deployment and management of hardware infrastructures. Especially
for small and medium enterprises with limited budgets, they can achieve cost savings and
productivity enhancements by using cloud-based services to manage projects, collaborate on
documents and presentations, manage enterprisewide contacts and schedules, and the like.
However, allowing a CSP, operated for making a profit, to take care of confidential enterprise
data, raises underlying security and privacy issues that will result in a huge loss for enterprises.
For instance, an untrustworthy CSP may sell the confidential information about an enterprise
to the enterprise’s closest business competitors for profit. Therefore, a natural way to keep
sensitive data confidential against an untrusted CSP is to encrypt outsourced data in advance.

We consider the following application scenario: Company A, whose hierarchy is shown in Fig.
1, pays a CSP for sharing data on cloud servers, where any member in Company A can store
files on cloud servers, and retrieve authorized files anytime and anywhere using any device.
Suppose Bob wants to store an encrypted file on cloud servers, so that only the members
satisfying the access control policy, shown in Fig. 2, can access it.

The intuition behind this access control policy is that the file should only be accessed
by Bob, who is the boss of the enterprise, Alice in the sales department (SD), whose ID is
“2010”, Clark in the financial department (FD), whose ID is “2011”, Donald in the personnel
department (PD), whose ID is “2012”, and the department manager, system analysts, or
senior programmers in the research and development department (RDD). Furthermore, the
party that administers all members’ IDs, is superior to the party that administers attributes
“isBoss”, “inRDD”, “DepartmentManager”, “SystemAnalyst”, and “SeniorProgrammer”.

In the above application scenario, (1) the encrypted file involves more than one recipient;
(2) the encrypter wishes to specify a fine-grained access control policy, which describes the
intended recipients using not only their IDs but also descriptive attributes; (3) the recipients
wish to access the file anytime and anywhere using any device, such as thin clients with limited
bandwidth, CPU, and memory capabilities; (4) corresponding to the hierarchy of Company A,
a delegation mechanism in the generation of keys inside the enterprise is needed.

Therefore, it is needed to propose a secure data sharing scheme, which simultaneously
achieves (1) “one-to-many encryption”, (2) flexibility, (3) high performance, and (4) full key
delegation, so as to be more applicable in cloud computing. Our design goal is to propose a
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Figure 1. The hierarchy of Company A

Figure 2. Sample access control policy. This access control policy can be expressed as a Boolean
formula over IDs and attributes. Either an attribute or an ID consists of a web site specifying which
party administers it and an identifier describing itself, both of which can be represented as strings
and concatenated with a single colon character as a separator. The slash “/” in each web site denotes

a concatenation between the superior and the subordinate.

novel encryption scheme, so as to help enterprise users to enjoy more secure, comprehensive,
and flexible services. Our contributions are fourfold:

1. A conjunctive precise and fuzzy identity-based encryption (PFIBE) model, which
creatively combines a HIBE system and a CP-ABE system, is better applicable to
enterprises outsourcing their data for sharing environment.

2. A PFIBE scheme, based on the proposed model, which achieves a fine-grained access
control over a set of IDs and descriptive attributes, enables users to enjoy more
comprehensive and high-quality services.

3. The PFIBE scheme, which requires only a constant number of bilinear map operations
during decryption, is tailored for best serving the needs of accessing data anytime and
anywhere.
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4. The PFIBE scheme, which supports full key delegation within an enterprise, can better
embody the hierarchy of enterprises.

Organization. The rest of this paper is organized as follows: We begin with a discussion
of related work in Section 2, and an introduction to preliminaries in Section 3. Then, we
provide an overview and an efficient construction for the PFIBE scheme in Section 4 and 5,
respectively. Next, we analyze the performance and security for the PFIBE scheme in Section
6. Finally, we conclude this paper in Section 7.

2. RELATED WORK

In this section, we introduce some preliminary cryptographic primitives to be used to meet
our requirements.

2.1. Traditional symmetric/public key cryptosystem

In a traditional symmetric key cryptosystem (SKC), a shared key between a sender and all
recipients is used as an encryption key and a decryption key. When a sender wants to encrypt
a file to n recipients, he first chooses a unique shared key corresponding to the file and sends
it to all recipients in a secure way, and then encrypts the file using the shared key. Finally, the
corresponding ciphertext is stored in a cloud. Therefore, the key size will grow linearly with
the number of ciphertexts.

In a traditional public key cryptosystem (PKC), each user has a public/private key pair, and
messages encrypted with a recipient’s public key can only be decrypted with the corresponding
private key. When a sender wants to encrypt a file to n recipients, he first obtains the
authenticated public keys of all the recipients, and then encrypts the file using each recipient’s
public key, respectively. Finally, the n copies of the corresponding ciphertexts are stored in a
cloud. Therefore, both the computational cost for encryption, and the length of the ciphertexts,
are proportional to the total number of intended recipients.

Obviously, neither of them should be applied directly while sharing data on cloud servers,
since they are inefficient to encrypt a file to multiple recipients, and fail to support attribute-
based access control and key delegation.

2.2. Broadcast Encryption

Fiat et al [26] first introduced the concept of the broadcast encryption (BE), in which a
broadcaster encrypts a message for some subset S of users who are listening on a broadcast
channel, so that only the recipients in S can use their private keys to decrypt the message.
The first proposal of a BE system is secure against a collusion of k users, which means that
such a scheme may be insecure if more than k users collude.

Recently, the study of a BE system, dedicated to having full collusion resistance and better
performance, has become more and more important with the ever-increasing concern with
copyright issues and the increasing interest in secure multicasting over cable television and
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the Internet. Compared with the attribute-based encryption (ABE) system, the performance
of the BE system may be worse. As discussed in Goyal et al [15], the efficiency of the systems
proposed in Boneh et al [28] and Halevy et al [27], which are the best known broadcast
encryption schemes, is not only dependent on the size of the authorized user set, but also
requires the broadcaster to refer to its database of user authorizations.

In a BE system, there are only two parties: a broadcaster and multiple users, where the
broadcaster generates the secret keys for all the users, and can broadcast an encrypted message
to some subset of the users. Obviously, a BE system achieves “one-to-many encryption” with
general performance, however, it may not applied directly while sharing data on cloud servers,
since it fails to support attribute-based access control and key delegation.

2.3. Hierarchical Identity-Based Encryption

Shamir [4] proposed the idea of identity-based cryptography, but a fully functional identity-
based encryption (IBE) scheme was not found until recent work by Boneh et al [6] and Cocks
[5]. An IBE scheme is a PKC, where any arbitrary string corresponding to a unique user
information is a valid public key. The corresponding private key is computed by a trusted
third party (TTP) called the private key generator (PKG). Compared with the traditional
PKC, the IBE system eliminates online look-ups for the recipient’s authenticated public key,
but introduces the key escrow problem.

In an IBE system, there is only one PKG to distribute private keys to each user, which is
undesirable for a large network because the PKG has a burdensome job. Horwitz et al [7],
dedicated to reducing the workload on the root PKGs, introduced the concept of a HIBE
system. They constructed a concrete two-level HIBE scheme, in which a root PKG needed
only to generate private keys for domain-level PKGs that, in turn generated private keys for
all the users in their domains at the next level. Their scheme, with total collusion resistance
on the upper level and partial collusion resistance on the lower level, has chosen ciphertext
security in the random oracle model.

Gentry et al [11] proposed a HIBE scheme (from here-on referred to as the G-HIBE scheme)
with total collusion resistance at an arbitrary number of levels, which has chosen ciphertext
security in the random oracle model under the BDH assumption. It is worth noticing that the
G-HIBE possesses a “valuable” property, i.e., an encrypted file can be decrypted by a recipient
and all his ancestors, using their own secret keys, respectively, which can be seen as “one-to-
many encryption” in a sense. A subsequent construction by Boneh et al [9] proposed a HIBE
system with selective-ID security under the BDH assumption without random oracles. In both
constructions, the length of ciphertext and private keys, as well as the time in encryption
and decryption, grows linearly with the depth of a recipient in the hierarchy. For better
performance, Boneh et al [10] proposed an efficient HIBE system, which requires only a
constant length of ciphertext and a constant number of bilinear map operations in decryption
with selective-ID security under the BDH assumption without random oracles.

In recent work, Gentry et al [11] proposed a fully secure HIBE scheme by using identity-based
broadcast encryption with key randomization; Waters [12] achieved full security in systems
under simple assumption by using dual system encryption. Among others, by making use of
the “valuable” property of the G-HIBE scheme, Liu et al [13] proposed an efficient sharing
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of the secure cloud storage services (ESC) scheme, where a sender can specify several users
as the recipients for an encrypted file by taking the number and public keys of the recipients
as inputs of a HIBE system. The limitation of their scheme is that the length of ciphertexts
grows linearly with the number of recipients, so that it can only be used in the case that a
confidential file involves a small set of recipients.

The HIBE system naturally achieves key delegation, and some HIBE schemes achieve “one-
to-many encryption” with general performance, however, it may not be applied directly while
sharing data on cloud servers, since it fails to support an attribute-based access control.

2.4. Attribute-Based Encryption

An ABE scheme is actually a generalization of the IBE scheme: In an IBE system, a user is
identified by only one attribute, i.e., the ID. Sahai et al [14] first introduced the concept of
the ABE schemes, in which a sender encrypted a message, specifying an attribute set and a
number d, so that only a recipient who has at least d attributes of the given attributes can
decrypt the message. Their scheme, which is referred to as threshold encryption, is collusion
resistant and has selective-ID security.

Based on their work, Goyal et al [15] proposed a fine-grained access control ABE scheme,
which supports any monotonic access formula consisting of AND, OR, or threshold gates. Their
scheme is characterized as key-policy ABE (KP-ABE) since the access structure is specified
in the private key, while the attributes are used to describe the ciphertexts. A subsequent
construction by Ostrovsky et al [16] allows for non-monotonic access structures (also include
NOT gates, i.e., negative constraints in a key’s access formula).

Bethencourt et al [17] introduced a ciphertext-policy ABE (CP-ABE) scheme, in which the
roles of the ciphertexts and keys are reversed in contrast with the KP-ABE scheme: The access
structure is specified in the ciphertext, while the private key is simply created with respect
to an attributes set. Muller et al [18] introduced a distributed attribute-based encryption
(DABE), and provided an efficient construction that requires a constant number of bilinear
map operations in decryption. The limitation of the DABE scheme is that the access control
policy must be expressed as a DNF, and the number of bilinear map operations in encryption
and the length of ciphertexts is directly proportional to the number of conjunctive clauses in
the DNF. Both of the above mentioned CP-ABE schemes provide a proof of security in the
generic bilinear group model and the random oracle model.

In recent work, Chase [19] provided a construction for a multi-authority ABE system, where
each authority would administer a different domain of attributes. Chase et al [20] provided
a more practice-oriented multi-authority ABE system, which removes the trusted central
authority while preserving user privacy. Among others, Yu et al [21] exploited and uniquely
combined techniques of ABE, proxy re-encryption (PRE) [24], and lazy re-encryption (LRE)
[25] to delegate most of the computation tasks involved in user revocation to untrusted CSPs
without disclosing the underlying data contents, which may make a KP-ABE system more
applicable in a cloud environment. Since each file is associated with an access control rather
than a set of attributes as KP-ABE, it is harder to delegate the re-encryption operation to a
third party. We find that the proxy re-encryption technique is only applied to CP-ABE until
in recent work of Wang et al [22] and Yu et al [23].
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The ABE system, which was first designed to achieve fault tolerance, can achieve attribute-
based access control with better performance compared with the above cryptographic
primitives. However, it may not be adopted directly while sharing data on cloud servers,
since it fails to support ID-based access control and “full key delegation”. It is worth noticing
that, although, some ABE systems support delegation between users, which enables a user
to generate attribute secret keys containing a subset of his own attribute secret keys for
other users, we hope to achieve a full delegation mechanism, that is, a delegation mechanism
between attribute authorities (AAs), which independently make decisions on the structure and
semantics of their attributes. In the HIBE system, a user private key, which is extracted from
keys of his parent, can also be used to extract private keys for the users at the next level. In
the ABE system, the attribute authority generates only a set of attribute secret keys, without
the ability to extract a low-level master key as HIBE systems using its own master key for a
user, and thus fail to support full delegation.

Summary. The characteristics of a HIBE system and an ABE system are supporting “full
delegation” and “fine-grained access control over attributes”, respectively. Furthermore, the
HIBE system is designed for encrypting to an exact recipient, as well as, the ABE system is
designed for encrypting to a set of attributes. Therefore, to simultaneously achieve fine-grained
access control over IDs and attributes, and full key delegation within an enterprise, a natural
way is to combine such encryption models. This is a non-trivial task, until we find that the
“valuable” property of the G-HIBE scheme, since this “one-to-many” property can be regarded
as a meeting point with an ABE system. Therefore, we first construct public/secret keys as
Gentry et al [8], which are the intuitions of the “one-to-many” property. Then, we mark each
user with an ID and a set of descriptive attributes. Finally, inspired by Muller et al [18], we
separate the access control policy into two parts: a recipient ID set and a DNF attribute-based
access control policy. We find that an encryption scheme achieves not only better performance,
but also the combination of a HIBE system and a CP-ABE system, by expressing the access
control policy in such a form.

3. PRELIMINARIES

In this section, we first introduce some related definitions and complexity assumptions, then
outline the G-HIBE scheme, and finally describe our system model and security model.

3.1. Definitions and Assumptions

We introduce some related definitions and complexity assumptions, which closely follows those
in Boneh et al [6].

Definition 3.1 (Bilinear Map): Let G1 and G2 be two cyclic groups of some large prime
order q, where G1 is an additive group and G2 is a multiplicative group. A bilinear map,
ê: G1 ×G1 → G2, satisfies the following properties:

1. Computable: There is a polynomial time algorithm to compute ê(P,Q) ∈ G2, for any
P,Q ∈ G1.
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8 G. WANG, Q. LIU, AND J. WU

2. Bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z∗
q .

3. Non-degenerate: The map does not send all pairs in G1 ×G1 to the identity in G2.

Definition 3.2 (BDH Parameter Generator): A randomized algorithm IG is called a BDH
parameter generator if IG takes a sufficiently large security parameter K > 0 as input, runs in
polynomial time in K, and outputs a prime number q, the description of two groups G1 and
G2 of order q, and the description of a bilinear map ê : G1 ×G1 → G2.

Definition 3.3 (BDH Problem): Given a random element P ∈ G1, as well as aP , bP , and cP ,
for some a, b, c ∈ Z∗

q , compute ê(P, P )abc ∈ G2.

Definition 3.4 (BDH Assumption): If IG is a BDH parameter generator, the advantage
AdvIG(B) that an algorithm B has in solving the BDH problem is defined to be the probability
that B outputs ê(P, P )abc on inputs q, G1, G2, ê, P , aP , bP , cP , where < q,G1,G2, ê > are
the outputs of IG for a sufficiently large security parameter K, P is a random element ∈ G1,
and a, b, c are random elements of Z∗

q . The BDH assumption is that AdvIG(B) is negligible
for any efficient algorithm B.

3.2. OUTLINE OF THE G-HIBE SCHEME

To reveal the insights behind the “valuable” property that enable a sender to encrypt a file
to multiple recipients (the recipient and all his ancestors), we will simply outline the G-HIBE
scheme.

In the G-HIBE scheme, the user public key is an ID-tuple, which consists of his ID and his
ancestors’ IDs. Let Usert be a user whose public key is ID-tuplet = (ID1, . . . , IDt). Usert’s
ancestors are the root PKG and the lower-level PKGs whose ID-tuples are (ID1, . . . , IDi) for
1 ≤ i < t. The G-HIBE scheme consists of five randomized polynomial time algorithms as
follows:

1. Root Setup: The Root PKG first picks mk0 ∈ Zq as the root master key, and then chooses
two groups G1 and G2 of order q, a bilinear map ê : G1 ×G1 → G2, two random oracles
H1: {0, 1}∗ → G∗

1 andH2: G2 → {0, 1}n for some n, and a random generator P0 ∈ G1. Let
Q0 = mk0P0. The system parameters are params =< q,G1,G2, ê, n, P0, Q0,H1,H2 >.

2. Lower-level Setup: Usert picks a random element mkt ∈ Zq as his master key.
3. Extraction: Usert’s parent generates Usert’s private key SKt by computing St =

St−1 +mkt−1Pt and giving (Q1, . . . , Qt−1), where St−1 and mkt−1 are the secret point
and master key of Usert’s parent, respectively, Qi = mkiP0 for 1 ≤ i ≤ t − 1, and
Pt = H1(ID1, . . . , IDt).

4. Encryption: To encrypt a file f to Usert, the sender first picks a random element r ∈ Z∗
q ,

and then sets Cf = [U0, U2, . . . , Ut, V ] = [rP0, rP2, . . . , rPt, f ⊕ H2(ê(Q0, rP1))], where
Pi = H1(ID1, . . . , IDi) for 1 ≤ i ≤ t.

5. Decryption: Given the ciphertext Cf , Usert computes V⊕H2(ê(U0, St)/
∏t

i=2 ê(Qi−1, Ui))
to recover f .

In summary, a user public key is an ID-tuple, which consists of the user’s ID and the user’s
ancestors’ public keys; a user private key consists of a secret point and a Q-tuple, both of which
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are generated from keys of his parent; a sender takes system parameters and the recipient’s
public key as the inputs of Encryption algorithm, so that the intended recipient can decrypt
the file using his own private key.

Liu et al [13] find the “valuable” property of the G-HIBE scheme as follows: Let Useri with

(ID1, . . . , IDi), where 1 ≤ i < t be one of Usert’s ancestors. Note that: St = Si+
t∑

j=i+1

mkj−1Pj .

For 1 ≤ i < t:

ê(U0,St)∏t
i=2 ê(Qi−1,Ui)

=
ê(U0,Si+

t∑
j=i+1

mkj−1Pj)∏i
k=2 ê(Qk−1,Uk)

∏t
k=i+1 ê(Qk−1,Uk)

=
ê(U0,Si)

∏t
j=i+1 ê(Qj−1,Uj)∏i

k=2 ê(Qk−1,Uk)
∏t

k=i+1 ê(Qk−1,Uk)

= ê(U0,Si)∏i
k=2 ê(Qk−1,Uk)

Therefore, given a part of the ciphertext [A, U0, U2, . . . , Ui, V ], Useri can recover f by

computing V ⊕H2(ê(U0, Si)/
∏i

k=2 ê(Qk−1, Uk)).
The insights behind such a “valuable” property is that a user can recover f using his own

private key, in case that his public key is on inputs of the Encryption algorithm, due to the
construction of user public key, user private key, and the encryption algorithm. By using such a
“valuable” property, Liu et al [13] proposed an ESC scheme, where a sender takes the number
of recipients and the public keys of recipients as inputs during encryption, so that the intended
recipients can decrypt the file using their own private key.

In this paper, also by making use of the “valuable” property of the G-HIBE scheme, we first
mark each domain master (DM) and attribute with a unique ID, but mark each user with
both an ID and a set of descriptive attributes. Specifically, to resist collusion, we enable user
secret keys, including user private key, user identity secret key, and user attribute secret key,
to relate to be his unique ID. Then, as the G-HIBE scheme, we enable an entity’s secret key
to be extracted from the DM administering itself, and an entity’s public key, which denotes its
position in the model, to be an ID-tuple consisting of the public key of the DM administering
itself and its ID. Next, we separate the access control policy into two parts: a recipient ID
set and a DNF attribute-based access control policy. Specifically, to achieve a DNF attribute-
based access control policy in encryption, we substitute “+” operation for “AND” semantics,
and separating character “,” for “OR” semantics, so that only users who possess all attribute
secret keys in at least one of the conjunctive clauses can decrypt the file.

3.3. System Model

We assume that the system is composed of the following parties: a CSP, a trusted third
party (TTP), enterprise users, end users, and internal trusted parties (ITPs). The former two
parties are easily understood: A CSP operates an amount of interconnected cloud servers with
abundant storage capacity and computation power to provide high-quality services, and a
TTP is responsible for generating keys for the CSP and enterprise users. We use Fig. 3 as an
example to illustrate the last three parties: Company A that pays for sharing enterprise data
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Figure 3. System Model

on cloud servers is an enterprise user, all personnel in the company who share data on cloud
servers are end users, a department in the company that delegates keys inside the company is
an ITP.

3.4. Security Model

As described in Haclgiimfi et al [3], there are two main attacks under such a circumstance,
i.e., outer attacks initiated by unauthorized outsiders, and inner attacks initiated by an honest,
but curious CSP, as well as some curious end users. Here, we call a CSP more interested in
file contents than other secret information an honest, but curious CSP, and an end user,
who is ineligible to decrypt a file, but wants to read it as a curious end user. A CSP might
collude with curious end users for the purpose of harvesting file contents. We assume that the
communication channels are secured under existing security protocols, such as SSL.

4. OVERVIEW OF THE PROPOSED SCHEME

In this section, we first propose a PFIBE model, and then provide a summary of keys used
in our scheme. Next, we outline the PFIBE scheme based on the proposed model. Finally, we
provide the security definition of the proposed scheme.

4.1. The PFIBE Model

Corresponding to the system model, the PFIBE model (see Fig. 4), which integrates properties
in both a HIBE model and a CP-ABE model, consists of a root master (RM) and multiple
domains, where the RM is the TTP, and the domains are enterprise users. More precisely, a
domain consists of many domain masters (DMs) corresponding to ITPs, and numerous users
corresponding to end users. Over authenticated and trusted channels, the RM distributes secret
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Figure 4. PFIBE Model

keys to DMs, which, in turn distribute secret keys to DMs at the next level and users in their
domains. In a domain, the DM hierarchy depends on the scale of an enterprise, e.g., a two-level
PFIBE model is enough in the case of a small enterprise.

The RM, whose role closely follows the root PKG in a HIBE system, is responsible for
generation and distribution of system parameters and domain keys. The DM, whose role
integrates both the properties of the domain PKG in a HIBE system and the AA in a CP-
ABE system, is responsible for delegating a generation of keys to DMs at the next level
and distributing secret keys to users. Specially, we enable first-level DM, denoted DM♢, to
administer all the users in a domain, just as the personnel office administers all personnel
in an enterprise, and not to administer any attribute. Notice that other DMs administer an
arbitrary number of disjoint attributes, and have full control over the structure and semantics
of their attributes.

4.2. Summary of Keys

In our scheme, there are multiple keys with different usages. Therefore, we provide the summary
of the most relevant keys used in our scheme (see Table I) to provide a quick reference:

1. The root master key MK0, possessed by the RM, is used to generate secret keys for the
top-level DMs.

2. DMi, with IDi, possesses a public key PKi and a master key MKi. PKi is an ID-tuple
of the form (PKi−1, IDi) where PKi−1 is the public key of DMi’s parent, except for
PK♢ = (ID♢). PKi can be used to generate personalized MKi which can be used in the
generation of user keys. It is worth noticing that only DM♢ is responsible for generating
user private keys, and other DMs are responsible for generating user identity secret keys
and user attribute secret keys.
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Table I. Summary of keys

Key Description Usage
MK0 Root master key Creation of master key

for DMs at the first level
PK♢ DM♢’s public key Creation of MK♢
MK♢ DM♢’s master key Creation of user private key
PKi(i ̸= ♢) DMi’s public key Creation of MKi

Creation of user private key,
MKi(i ̸= ♢) DMi’s master key user identity secret key, and

user attribute secret key
PKu U ’s public key Creation of user identity secret key

and user attribute secret key
SKu U ’s private key Decryption

requested from DM♢
SKi,u U ’s identity secret key

requested from DMi Decryption
SKi,u,a U ’s attribute secret

key requested from Decryption
DMi on attribute a

PKa a’s public key Creation of user attribute secret key

3. User U , with IDu and a set of descriptive attributes {a}, possesses a user public key
PKu, a user private key SKu, a set of user identity secret keys {SKi,u}, and a set of user
attribute secret keys {SKi,u,a}. PKu is an ID-tuple of the form (PK♢, IDu) where (PK♢)
is the public key of the first-level DM. PKu is used by the DM♢ to generate personalized
SKu, and by the DMi to generate personalized SKi,u and {SKi,u,a}, all of which can be
used in the decryption.

4. Attribute a, with IDa, possesses a public key PKa that is used in the encryption and in
the generation of attribute secret keys. PKa is an ID-tuple of the form (PKi, IDa) where
PKi is the public key of DMi(i ̸= ♢) administering attribute a.

4.3. The PFIBE Scheme

Based on the PFIBE model, we provide a formal definition of the PFIBE scheme. For ease of
presentation, we illustrate how the PFIBE scheme works by the following application scenario
(see Fig. 5), which will be used as our sample application for the rest of this paper.

Let all the departments and personnel in Company A constitute a domain, denoted DomA,
where DM♢ is the first level DM. Suppose, in DomA, there are M users U1, . . . , UM , whose
public keys are in the form of PKui = (PK♢, IDui) for 1 ≤ i ≤ M , and m DMs DM♢, . . . ,
DMm, whose public keys are in the form of PKi = (PKi−1, IDi) for 2 ≤ i ≤ m, except for
PK♢ = (ID♢).
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Figure 5. Sample Application Scenario

Figure 6. DNF attribute-based access control policy. The DNF policy consists of four conjunction
clauses, in each of which all attributes are administered by the same DM. A user needs all attribute

secret keys in at least one of the conjunctive clauses to be able to read it.

When Bob wants to encrypt a confidential file to some one who satisfies an access control
policy, he first separates it into two parts: a recipient ID set R, and a DNF attribute-based
access control A. To illustrate how this transformation works, we return to the previously
mentioned application scenario. The access control policy in Fig. 1 can be transformed into two
parts: R={“http://www.companyA.com:2010”,“http://www.companyA.com:2011”,“http://
www.companyA.com:2012”}, and a DNF attribute-based access control A as shown in Fig. 6.

Suppose R = {IDu1 , . . . , IDun} where 1 ≤ n ≤ M , and A =
N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij), where

N ∈ Z+ is the number of conjunctive clauses in A, ni ∈ Z+ is the number of attributes in the
i-th conjunctive clause CCi, and aij is the j-th attribute in CCi. Let DMiti with (IDi1, . . . ,
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IDiti) be the DM administering all attributes in CCi, where IDik for 1 ≤ k < ti are IDs of
DMiti ’s ancestors and IDi1=ID♢ is the ID of DM♢.

Next, Bob sends the following message to a CSP:

MSGBob2CSP = Encrypt(params, f,R,A, {PKu|IDu ∈ R}, {PKa|IDa ∈ A})
where params are the system parameters, f is a confidential file, R is the recipient ID set, A
is a DNF attribute-based access control policy, {PKu} are the public keys of partial intended
recipients, and {PKa} are the public keys of the attributes describing the remaining recipients.

User U , whose ID belonging to R or attributes satisfying the i-th conjunctive clause CCi in
A, can recover f by computing the following formulae (1) and (2), respectively:

RDecrypt(params,CT,SKu) (1)

ADecrypt(params,CT,SKiti,u, {SKiti,u,a}), (2)

where CT is the ciphertext, and SKu, SKiti,u, and {SKiti,u,a} are U ’s private key, identity
secret key, and attribute secret keys of all attributes in CCi, respectively.

Definition 4.1 (Definition of the PFIBE Scheme): The PFIBE scheme consists of seven
randomized polynomial time algorithms as follows:

1. Setup(K) → (params,MK0): The RM takes a sufficiently large security parameter K as
input, and outputs system parameters params and root master key MK0.

2. CreateDM(params,MKi,PKi+1) → (MKi+1): Whether the RM or a DM generates
master keys for the DMs directly under it using params and its master key.

3. CreateSK(params,MK♢,PKu) → (SKu): DM♢ first checks whether U is eligible for
PKu. If so, it generates a user private key using params and its master key; Otherwise,
it outputs “NULL”.

4. CreateUser(params,MKi,PKu,PKa) → (SKi,u,SKi,u,a): A DM except for the DM♢
first checks whether U is eligible for a which is administered by itself. If so, it generates
a user identity secret key and a user attribute secret key for U , using params and its
master key; Otherwise, it outputs “NULL”.

5. Encrypt(params, f,R,A, {PKu|IDu ∈ R}, {PKa|IDa ∈ A}) → (CT): A user takes a file
f , a recipient ID set R, a DNF attribute-based access control policy A, public keys of
recipients whose IDs belonging to R, and public keys of all attributes whose IDs belonging
to A, as inputs, and outputs a ciphertext CT.

6. RDecrypt(params,CT,SKu) → (f): A user, whose ID belonging to R, takes params,
the ciphertext, and the user private key, as inputs, to recover the plaintext.

7. ADecrypt(params,CT,SKi,u, {SKi,u,a|a ∈ CCj}) → (f): A user, whose attributes
satisfy the j-th conjunctive clause CCj in A, takes params, the ciphertext, the user
identity secret key, and the user attribute secret keys of all attributes in CCj , as inputs,
to recover the plaintext.

4.4. Semantic Security of the PFIBE scheme

We define security for the PFIBE scheme in the sense of semantic security [6]. Semantic
security captures our insight that given a ciphertext, the adversary learns nothing about the
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Figure 7. Working Process of the PFIBE scheme

corresponding plaintext, thus we also say that a semantically secure scheme is IND-CPA secure
[6]. As those in Boneh et al [6] did, we strengthen the standard definition of semantic security
for the PFIBE scheme by allowing an adversary to query any user key, including user private
key and user attribute secret keys in DomA, of his choice. Also, we allow an adversary to choose
the recipient ID set R and the DNF attribute-based access control policy A on which it wishes
to be challenged. Even under such an attack, the adversary should not be able to distinguish
an encryption of a file f0 from an encryption of a file f1 so long as he did not obtain any of
the private keys corresponding to R and all the attribute secret keys in any conjunctive clause
in A. We define the semantic security for the PFIBE scheme in terms of a game as follows:

Setup: The challenger runs the Setup algorithm when inputting a sufficiently large security
parameter K to generate the system parameters params and a root master key. It gives
adversary A params, but keeps the root master key to itself.

Phase 1: Adversary A can query any user key in DomA of his choice. When adversary A
issues a query for user U ’s private key, the challenger first runs the CreateDM algorithm to
generate keys for DM♢, and then runs the CreateSK algorithm to generate a private key for
U . When adversary A issues a query for user U at attribute a, which is administered by DMi,
the challenger first runs the CreateDM algorithm to generate keys for DMi, and then runs
the CreateUser algorithm to generate an identity secret key SKi,u and an attribute secret key
SKi,u,a for U . These queries may be asked adaptively.
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Challenge: Once adversary A decides that Phase 1 is over, it outputs a recipient ID set R =

{IDu1 , . . . , IDun}, a DNF attribute-based access control policy A =
N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij),

and two equal length plaintexts f0, f1 on which it wishes to be challenged. The constraints
are: (1) None of the ID ∈ R appears in any private key query in Phase 1; (2) None of the
users, for whom adversary A requests secret keys in Phase 1, possess all attribute secret keys
in one of the conjunctive clauses in A. The challenger picks a random bit b ∈ {0, 1}, sets
Cfb = Encrypt(params, fb,R,A, {PKu|IDu ∈ R}, {PKa|IDa ∈ A}), and sends Cfb as the
challenge to A.

Phase 2: Adversary A issues more user attribute secret key queries with the same
constraints as those in Challenge. The challenger responds as that in Phase 1.

Guess: Adversary A outputs a guess b
′ ∈ {0, 1}, and wins the game if b = b

′
. We define A’s

advantage in breaking the PFIBE scheme to be AdvA(K) = |Pr[b = b
′
]− 1/2|.

Definition 4.2 (Semantic Security of the PFIBE Scheme): We say that the PFIBE scheme is
semantically secure if for any polynomial time adversaryA, the function AdvA(K) is negligible.

5. CONSTRUCTION OF THE PFIBE SCHEME

In this section, we construct the PFIBE scheme using the bilinear map. Let IG be a
BDH parameter generator. We present the PFIBE scheme by describing the following seven
randomized polynomial time algorithms:

1. Setup(K) → (params,MK0) : The RM first picks mk0 ∈ Zq, and then chooses groups
G1 and G2 of order q, a bilinear map ê : G1 × G1 → G2, two random oracles
H1: {0, 1}∗ → G1 and H2: G2 → {0, 1}n for some n, and a random generator P0 ∈ G1.
LetQ0 = mk0P0 ∈ G1. The system parameters params = (q,G1,G2, ê, n, P0, Q0,H1,H2)
will be publicly available, while MK0 = (mk0) will be kept secret.

2. CreateDM(params,MKi,PKi+1) → (MKi+1) : To generate the master key for DMi+1

with PKi+1, the RM or DMi first picks a random elementmki+1 ∈ Zq, and then computes
SKi+1 = SKi + mkiPi+1 where Pi+1 = H1(PKi+1) ∈ G1, and Qi+1 = mki+1P0 ∈ G1,
finally sets MKi+1 = (mki+1,SKi+1,Q-tuplei+1) where Q-tuplei+1 = (Q-tuplei, Qi+1),
and gives the random oracle HA : {0, 1} → Zq that is chosen by the RM and shared in
DomA. Here, we assume that SK0 is an identity element of G1, and Q-tuple0 = (Q0).

3. CreateSK(params,MK♢,PKu, ) → (SKu) : To generate a private key for user U
with PKu, DM♢ first checks whether U is eligible for PKu. If so, it first sets SKu =
(Q-tuple♢,SK♢ +mk♢Pu), where Pu = H1(PKu) ∈ G1. Otherwise, it outputs “NULL”.

4. CreateUser : To generate a secret key for user U with PKu on attribute a with PKa,
DMi first checks whether U is eligible for a, and a is administered by itself. If so, it first
computes mku = HA(PKu) ∈ Zq, and then sets SKi,u = (Q-tuplei−1,mkimkuP0), and
SKi,u,a = SKi + mkimkuPa ∈ G1, where Pa = H1(PKa) ∈ G1; Otherwise, it outputs
“NULL”.

5. Encrypt(params,R,A, {PKu|IDu ∈ R}, {PKa|IDa ∈ A}, f) → (CT) : Given a recipient
ID set R = {IDu1 , . . . , IDun}, and a DNF attribute-based access control policy A =
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N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij), where N ∈ Z+ is the number of conjunctive clause in A,

ni ∈ Z+ is the number of attributes in the i-th conjunctive clause CCi, and aij is the j-th
attribute in CCi. Let DMiti with (IDi1, . . . , IDiti) be the DM at level ti, administering all
attributes in CCi, where IDik for 1 ≤ k < ti are IDs of DMiti ’s ancestors, and IDi1=ID♢
is the ID of DM♢. The sender:

(a) Computes P♢ = H1(PK♢) ∈ G1.
(b) Computes Pui = H1(PKui) ∈ G1, for 1 ≤ i ≤ n.
(c) For 1 ≤ i ≤ N : Computes Pij = H1(IDi1, . . . , IDij) ∈ G1 for 1 ≤ j ≤ ti, and

Paij = H1(IDi1, . . . , IDiti , IDaij ) ∈ G1 for 1 ≤ j ≤ ni.
(d) Picks a random element r ∈ Zq, sets nA to be the lowest common multiple (LCM)

of n1,. . . , nN , and computes U0 = rP0, Uu1 = rPui , . . . , Uun = rPun , U12 = rP12,

. . . , U1t1 = rP1t1 , U1 = r
n1∑
j=1

Pa1j , . . . , UN2 = rPN2, . . . , UNtN = rPNtN ,

UN = r
nN∑
j=1

PaNj , and V = f ⊕H2(ê(Q0, rnAP♢)).

(e) Sets the ciphertext to be CT= (R,A, Cf ), where Cf = [U0, Uu1 , . . . , Uun , U12, . . . ,
U1t1 , U1, . . . , UN2, . . . , UNtN , UN , V ].

6. RDecrypt(params,CT,SKu) → (f) : User Ui whose ID belonging to R, sets nA to be
the LCM of n1,. . . , nN , and computes V ⊕H2(ê(nAU0,SK♢ +mk♢Pui)/ê(nAQ♢, Uui))
to recover f . Observe that:

V⊕H2(ê(nAU0,SK♢ +mk♢Pui
)/ê(nAQ♢, Uui))

=V⊕H2(ê(rnAP0,mk0P♢ +mk♢Pui)/ê(nAQ♢, rPui))
=V⊕H2(ê(rnAP0,mk0P♢)ê(rnAP0,mk♢Pui

)/ê(nAQ♢, rPui
))

=V⊕H2(ê(mk0P0, rnAP♢)ê(nAmk♢P0, rPui)/ê(nAQ♢, rPui))
=V⊕H2(ê(mk0P0, rnAP♢)ê(nAQ♢, rPui

)/ê(nAQ♢, rPui
))

=V⊕H2(ê(Q0, rnAP♢)) = f

as required.
7. ADecrypt(params,CT,SKiti,u, {SKiti,u,aij |1 ≤ j ≤ ni}) → (f) : User U , whose

attributes satisfy CCi, computes V ⊕H2(
ê(U0,

nA
ni

ni∑
j=1

SKiti,u,aij
)

ê(mkumkiti
P0,

nA
ni

Ui)
ti∏

j=2

ê(Uij ,nAQi(j−1))

) to recover
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f . Observe that:

V ⊕H2(
ê(U0,

nA
ni

ni∑
j=1

SKiti,u,aij
)

ê(mkumkiti
P0,

nA
ni

Ui)
ti∏

j=2

ê(Uij ,nAQi(j−1))

)

= V ⊕H2(
ê(U0,

nA
ni

ni∑
j=1

(SKi1+
ti∑

k=2

mki(k−1)Pik+mkiti
mkuPaij

))

ê(mkumkiti
P0,

nA
ni

Ui)
ti∏

j=2
ê(Uij ,

nA
ni

Qi(j−1))

)

= V ⊕H2(
ê(U0,nASKi1)ê(U0,nA

ti∑
k=2

mki(k−1)Pik+
nA
ni

mkiti
mku

ni∑
j=1

Paij
)

ê(SKiti,u
,
nA
ni

Ui)
ti∏

j=2

ê(Uij ,nAQi(j−1))

)

= V ⊕H2(
ê(Q0,nArPi1)

ti∏
k=2

ê(Qi(k−1),nAUik)ê(SKiti,u
,
nA
ni

Ui)

ê(SKiti,u
,
nA
ni

Ui)
ti∏

j=2

ê(Uij ,nAQi(j−1))

)

= V ⊕H2(ê(Q0, nArPi1))
= V ⊕H2(ê(Q0, nArP♢))

as required.
Remark 1. To achieve better performance, we enable user U to send the value of Q-
tuplei(ti−1) to the CSP before decrypting data, so that the CSP can help to calculate the

value of
ti∏

j=2

ê(Uij , nAQi(j−1))). Given this value, U runs the ADecrypt algorithm which

executes the bilinear map operations for two times to recover the file.
Remark 2. U ’s public key (ID♢, IDu) and a’s public key (ID♢, . . . , IDi, IDa) can be
concatenated into strings “ID♢ : IDu” and “ID♢ : . . . : IDi : IDa”, respectively (“ : ”
denotes string concatenation), both of which are standard inputs of H1 and HA hash
functions.
Remark 3. All DMs in DomA share the HA hash function, and thus they can
generate the same value of mku for user U . However, mku, which contributes nothing to
decryption, will not be given to U .

This concludes the description of the PFIBE scheme.

6. PERFORMANCE AND SECURITY

In this section, we will analyze the performance and security of the proposed PFIBE scheme.

6.1. Performance Analysis

The efficiency of the Setup, CreateDM, CreateSK, CreateAttribute, and CreateUser algorithms
is rather straightforward. The Setup algorithm requires only one exponentiation operation
to generate system parameters of constant length; The CreateDM algorithm requires only
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Table II. Comparisons of CP-ABE Schemes

Properties CP-ABE in ISSP 07 DABE in ICISC 08 Our Scheme
User Key Size O(2L) O(L) O(L+ I)
Ciphertext O(2S) O(3N) O(NT + n)
Encryption (exp) O(2N) O(3N) O(NT + n)
Decryption (map) O(2P ) O(1) O(1)
Full Delegation NO NO YES
Multiple AAs NO YES YES
Access control over IDs or attributes NO NO YES

two exponentiation operations to generate keys of O(i) length to DMs at Level i ∈ Z+; The
CreateSK algorithm requires DM♢ to execute only one exponentiation operation to generate
secret keys of O(1) length to a user; The CreateUser algorithm requires DMs at level i to
execute O(L) number of exponentiation operations to generate secret keys of O(i+ L) length
to a user associating with L ∈ Z+ attributes.

To encrypt a file f under a recipient ID set R = {IDu1 , . . . , IDun} and a DNF access control

policy A =
N
∨
i=1

(CCi), a user needs to compute one bilinear map of Q0 and P1, and O(n+NT )

number of exponentiation operations to output a ciphertext of O(n + NT ) length, where
n ∈ Z+ is the number of recipients in R, N ∈ Z+ is the number of the conjunctive clauses
in A, and T ∈ Z+ is the maximum depth of all DMs administering attributes in A. Notice
that the computation for the bilinear map of Q0 and P1 is independent of the message to be
encrypted, and hence can be done once for all. To recover f , a user whose ID belonging to R
runs the RDecrypt algorithm, which needs to execute O(1) bilinear map operations, and a user
who possesses user attribute secret keys on all attributes in CCi runs the ADecrypt algorithm,
which needs to execute O(1) bilinear map operations.

In Table II, we briefly compare our scheme with the work by Bethencourt et al [17] that
is a CP-ABE scheme of a monotone access control and the work by Muller et al [18] that is
the CP-ABE scheme of best performance. We believe that the most expensive computation
is the bilinear map operation, abbreviated as map. The next is the exponentiation operation,
abbreviated as exp.

In Table II, L, I, S, N , T , n, P denote, the number of attributes associated with a user,
the maximum depth of DMs administering attributes associated with a user, the number of
attributes in access control, the number of conjunctive clauses in access control, the maximum
depth of DMs administering attributes in access control, the number of recipients, and the
number of attributes matched by a user’s private key attributes, respectively.

6.2. Security Analysis

We first provide an intuitive security argument. Recall that a confidential file f is encrypted
in the form of Cf = [U0, Uu1 , . . . , Uun , U12, . . . , U1t1 , U1, . . . , UN2, . . . , UNtN , UN , V ] =
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[rP0, rPu1 , . . . , rPun , rP12, . . . , rP1t1 , r
n1∑
j=1

Pa1j , . . . , rPN2, . . . , rPNtN , r
nN∑
j=1

PaNj
, f ⊕H2(ê(Q0,

rnAP♢))]. Therefore, the adversary A needs to construct ê(Q0, rnAP♢) to decrypt Cf .
Q0 and P♢ can be publicly available, and nA can be obtained from the ciphertext, but due

to the DHP assumption [6], adversary A is unaware of the value of random mask r. In other
words, adversary A cannot construct ê(Q0, rnAP♢) directly. However, due to the properties
of the bilinear map, we have: ê(Q0, rnAP♢) = ê(U0, nASK♢). That is to say, adversary A can
construct ê(U0, nASK♢) instead of ê(Q0, rnAP♢) to decrypt Cf .

To create such a bilinear map, the adversary can only use keys that have been obtained in a
security game defined in Section 4, where the constraints are (1) None of the ID ∈ R appears
in any private key query; (2) None of the users possess a sufficient set of attribute keys to
decrypt Cf . For ease of presentation, we have the following assumptions: (1) Adversary A
has requested private key for any Uj outside U1, . . . ,Un; (2) Adversary A has requested user
attribute secret keys for user U on all but one of the attributes ai1, . . . , ai(k−1), ai(k+1), . . . , aini

in CCi, and for user U ′
on the missing attribute aik. The only occurrence of SK♢ is in the

user private key and user attribute secret key, so the adversary has to:
(1) Make use of user private key requested for Uj for the bilinear map, yielding:

ê(nAU0,SK♢ +mk♢Puj + α)
= ê(nAU0,SK♢)ê(nAU0,mk♢Puj ))ê(nAU0, α)
= ê(U0, nASK♢)ê(mk♢P0, rnAPuj ))ê(rnAP0, α)
= ê(U0, nASK♢)ê(Q♢, rnAPuj )ê(rnAP0, α)

for some α. To obtain ê(U0, nASK♢), the values of ê(Q♢, rnAPuj ) and ê(rnAP0, α) have to
be eliminated. However, the value of ê(Q♢, rnAPuj ) is unknown to the adversary, and cannot
be constructed by the adversary. Therefore, A cannot recover the file.

(2) Make use of user attribute secret keys requested for U and U ′
for the bilinear map,

yielding:

ê(U0,
nA
ni

ni∑
j=1,j ̸=k

SKiti,u,aij +
nA
ni
SKiti,u

′ ,aik
+ α)

= ê(rP0,
nA
ni

ni∑
j=1,j ̸=k

(SKi1 +
ti∑
t=2

mki(t−1)Pit +mkitimkuPaij )

+nA
ni
SKi1 +

nA
ni

ti∑
t=2

mki(t−1)Pit +
nA
ni
mkitimku′Paik

+ α)

= ê(rP0, nASKi1)ê(mkitimkuP0,
nA
ni
r

ni∑
j=1,j ̸=k

Paij )

= ê(U0,SK♢)
nA

ti∏
t=2

ê(Qi(t−1), Uit)
nA ê(rP0, α)

ê(mku′mkitiP0, rPaik
)

nA
ni ê(mkumkitiP0, r

ni∑
j=1,j ̸=k

Paij )
nA
ni

for some α. To obtain ê(U0,SK♢)
nA , the last four elements have to be eliminated. However,

the values of ê(mk
′

umkitiP0, rPaik
) and ê(mkumkitiP0, r

ni∑
j=1,j ̸=k

Paij ) are unknown to the

adversary, and cannot be constructed. Therefore, A cannot recover the file.
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7. CONCLUSION

Cloud computing is one of the current most important and promising technologies. For the sake
of enjoying a more comprehensive and high-quality service, we proposed a novel encryption
scheme which simultaneously achieves flexibility, high performance, and full key delegtaion.
The proposed scheme, which is collusion resistant, can be proved to have semantic security
under the BDH assumption and random oracle model. In future work, we will design a more
expressive encryption scheme to have full security under the standard model, with better
performance.

REFERENCES

1. L. Vaquero, L. Merino, J. Caceres, and M. Lindner. A Break in the Clouds: Towards a Cloud Definition.
ACM SIGCOMM Computer Communication Review, 39(1): 50-55, January 2009.

2. K. Bowers, A. Juels, and A. Oprea. HAIL: A High-Availability and Integrity Layer for Cloud Storage. In
Proceedings of ACM CCS 2009, pages 187-198.

3. H. Haclgiimfi, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted Data in Database-Service-
Provider Model. In Proceedings of ACM SIGMOD 2002, pages 216-227.

4. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Proceedings of CRYPTO 1984,
volume 196 of LNCS, pages 47-53.

5. C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues, In Proceedings of IMA
2001, volume 2260 of LNCS, pages 360-363.

6. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In Proceedings of CRYPTO
2001, volume 2139 of LNCS, pages 213-229.

7. J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. In Proceedings of EUROCRYPT
2002, volume 2332 of LNCS, pages 466-481.

8. C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. In Proceedings of ASIACRYPT 2002,
volume 2501 of LNCS, pages 548-566.

9. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption without Random Oracles.
In Proceedings of EUROCRYPT 2004, volume 3027 of LNCS, pages 223-238.

10. D. Boneh, X. Boyen, and E. Goh. Hierarchical Identity Based Encryption with Constant Size Ciphertext.
In Proceedings of EUROCRYPT 2005, volume 3494 of LNCS, pages 440-456.

11. C. Gentry and S. Halevi. Hierarchical Identity Based Encryption with Polynomially Many Levels. In
Proceedings of TCC 2009, volume 5444 of LNCS, pages 437-456.

12. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions.
In Proceedings of CRYPTO 2009, volume 5677 of LNCS, pages 619-636.

13. Q. Liu, G. Wang, and J. Wu. Efficient Sharing of Secure Cloud Storage Services. In Proceedings of IEEE
TSP 2010, in conjunction with IEEE CIT 2010, pages 922-929.

14. A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In Proceedings of EUROCRYPT 2005, volume
3494 of LNCS, pages 457-473.

15. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption for Fine-grained Access Control
of Encrypted Data. In Proceedings of ACM CCS 2006, pages 89-98.

16. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-Based Encryption with Non-Monotonic Access
Structures. In Proceedings of ACM CCS 2007, pages 195-203.

17. J . Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-Based Encryption. In Proceedings
of ISSP 2007, pages 321-334.

18. S. Muller, S. Katzenbeisser, and C. Eckert. Distributed Attribute-Based Encryption. In Proceedings of
ICISC 2008, pages 20-36.

19. M. Chase. Multi-Authority Attribute Based Encryption. In Proceedings of TCC 2007, volume 4392 of
LNCS, pages 515-534.

20. M. Chase and S. Chow. Improving Privacy and Security in Multi-Authority Attribute-Based Encryption.
In Proceedings of ACM CCS 2009, pages 121-130.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



22 G. WANG, Q. LIU, AND J. WU

21. S. Yu, C. Wang, K. Ren, and W. Lou, Achieving Secure, Scalable, and Fine-grained Data Access Control
in Cloud Computing. In Proceedings of INFOCOM 2010, pages 534-542.

22. G. Wang, Q. Liu, and J. Wu. Hierarchical Attribute-Based Encryption for Fine-Grained Access Control
in Cloud Storage Services. In Proceedings of ACM CCS 2010, P&D Session, pages 735-737.

23. S. Yu, C. Wang, and K. Ren. Attribute Based Data Sharing with Attribute Revocation. In Proceeding of
ASIACCS 2010, pages 261-270.

24. E. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing Remote Untrusted Storage. In
Proceedings of NDSS 2003, pages 131-145.

25. M. Blaze, G. Bleumer, and M. Strauss. Divertible Protocols and Atomic Proxy Cryptography. In
Proceedings of EUROCRYPT 1998, pages 127–144.

26. A. Fiat and M. Naor. Broadcast Encryption. In Proceedings of CRYPTO 1993, volume 773 of LNCS,
pages 480-491.

27. D. Halevy and A. Shamir. The LSD Broadcast Encryption Scheme. In Proceedings of CRYPTO 2002,
volume 2442 of LNCS, pages 47-60.

28. D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast Encryption with Short Ciphertexts
and Private Keys. In Proceedings of CRYPTO 2005, volume 3621 of LNCS, pages 258-275.

APPENDIX .

A. SECURITY PROOF

To analyze the security of the proposed scheme, we provide the following theorem, which
shows that the PFIBE scheme is semantically secure under the BDH assumption and random
oracle model.
Theorem A.1: Suppose that Algorithm A is an adversary that has the advantage ϵ of

successfully attacking the PFIBE scheme. Suppose Algorithm A specifies a recipient ID set

R = {IDu1 , . . . , IDun} and a DNF attribute-based access control policy A =
N
∨
i=1

(CCi) =

N
∨
i=1

(
ni∧
j=1

aij), and makes at most qH2 > 0 hash queries to H2, at most qE1 > 0 user

private key queries, and at most qE2 > 0 user attribute secret key queries in DomA.
Then, there is an adversary B that breaks the BDH problem with the advantage at least
2ϵNNnn/qH2

eN+n(qE2
+N)N (qE1

+ n)n, and a running time O(time(A)). Here, e ≈ 2.71 is
the base of the natural logarithm.
Proof : Let H1 and H2 be random oracles from {0, 1}∗ to G1 and from G2 to {0, 1}n,
respectively. Algorithm B is given q, G1, G2, ê, P0, µ0 = αP0, µ1 = βP0, and µ2 = γP0,
where < q,G1,G2, ê > are the outputs of a BDH parameter generator for a sufficiently large
security parameter, P0 is a generator of G1, and α, β, and γ are random elements of Zq. Its
goal is to output D = e(g, g)αβγ ∈ G2. Let D be the solution to the BDH problem. Algorithm
B finds D by interacting with Algorithm A as follows:

Setup: Algorithm B sets Q0 = µ0 = αP0 and gives < q,G1,G2, ê, n, P0, Q0,H1,H2 > as
the system parameters to Algorithm A, where H1 and H2 are controlled by Algorithm B, as
described below.

H1-Queries: Algorithm B maintains a list of tuples called H1-List, in which each
entry is a tuple of the form (ID-tupleaj

,P-tupleaj
,b-tupleaj

,mk-tupleaj
, c-tupleaj

), or
(ID-tupleuj

,P-tupleuj
,b-tupleuj

,mk-tupleuj
, c-tupleuj

). H1-List is initially empty. Algorithm
B first adds ID-tuplei1 = (ID♢) to H1-List as follows:
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1. Pick random elements mk♢ and b♢ ∈ Zq.
2. Set c♢ = 1.
3. Set P♢ = b♢P0 + µ1.
4. Put ((ID♢), (P♢), (b♢), (mk♢), (c♢)) in H1-List.

When Algorithm A queries H1 at a point ID-tupleui
= (PK♢, IDui) = (ID♢, IDui),

Algorithm B responds as follows:

1. Picks two random elements mkui and bui ∈ Zq.
2. Picks a random coin cui ∈ {0, 1} so that Pr[cui = 0] = δ1 for some δ1 that will be

determined later.
3. If cui = 1, Algorithm B sets Pui = buiP0.
4. If cui = 0, Algorithm B sets Pui = buiP0 −mk−1

♢ P♢, where mk−1
♢ is the inverse of mk♢

modulo q.
5. Put ((ID♢, IDui), (P♢, Pui), (b♢, bui), (mk♢,mkui), (c♢, cui)) in H1-List and return

H1(ID-tupleui
) = (P♢, Pui) ∈ G1 to Algorithm A.

When Algorithm A queries H1 at a point ID-tupleai
= (IDi1, . . . , IDiti , IDai), Algorithm B

responds as follows: Let y be maximal such that (IDi1, . . . , IDiy) = (IDj1, . . . , IDjy) for some
tuple ((IDj1, . . . , IDjtj , IDaj ), (Pj1, . . . , Pjtj , Paj ), (bj1, . . . , bjtj , baj ), (mkj1, . . . ,mkjtj ,mkaj ),
(cj1, . . . , cjtj , caj )) already in H1-List. Then:

1. For 1 ≤ k ≤ y, Algorithm B sets Pik = Pjk, bik = bjk, mkik = mkjk, and cik = cjk.
2. For y < k ≤ ti, Algorithm B:

(a) Picks two random elements mkik and bik ∈ Zq.
(b) Sets cik = 1.
(c) Sets Pik = bikP0.

3. For IDai Algorithm B:

(a) Picks two random elements mkai and bai ∈ Zq.
(b) Picks a random coin cai ∈ {0, 1} so that Pr[cai = 0] = δ2 for some δ2 that will be

determined later.
(c) If cai = 1, Algorithm B sets Pai = baiP0.
(d) If cai = 0, Algorithm B sets Pai = baiP0 −mk−1

iti
P♢, where mk−1

iti
is the inverse of

mkiti modulo q.

4. Put ((IDi1, . . . , IDiti , IDai), (Pi1, . . . , Piti , Pai), (bi1, . . . , biti , bai), (mki1, . . . ,mkiti ,mkai),
(ci1, . . . , citi , cai)) in H1-List and return H1(ID-tupleai

) = (Pi1, . . . , Piti , Pai) ∈ G1 to
Algorithm A.

Note that these values are always chosen uniformly in G1, and are independent of Algorithm
A’s view as required.

H2-Queries: Algorithm B maintains a list of tuples called H2-List, in which each entry is
a tuple of the form (Tj , Vj). The list is initially empty. When Algorithm A queries H2 at a
point of Ti, Algorithm B checks if Ti = Tj , where Tj already appears on H2-List in the form of
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(Tj , Vj). If so, Algorithm B responds to Algorithm A with H2(Ti) = Vj . Otherwise, Algorithm
B picks a random string Vi ∈ {0, 1}n, adds the tuple (Ti, Vi) to H2-List, and responds to
Algorithm A with H2(Ti) = Vi.

Phase 1: At any time, Algorithm A may make a private key query on any ID-tupleui
.

Algorithm B responds to this query as follows:

1. Run the H1-Queries to obtain the appropriate tuple (ID-tupleui
,P-tupleui

,b-tupleui
,

mk-tupleui
, c-tupleui

) in H1-List.
2. If cui = 1, then Algorithm B reports failure to Algorithm A and terminates the

interaction. Otherwise, we know that Pui = buiP0 −mk−1
♢ P♢ where mk−1

♢ is the inverse
of mk♢ modulo q.

3. Set Q-tuple♢ = (Q0, Q♢), where Q0 = µ0 = αP0, and Q♢ = mk♢µ0 = mk♢αP0.
4. Set SKui = (Q-tuple♢,mk♢buiµ0) = (mk♢αP0,mk♢buiαP0) as the private key to

Algorithm A.

Observe that: Q0 = µ0 = αP0, Q♢ = αmk♢P0, so the root master key is α, and the master
key of DM♢ is αmk♢. Although Algorithm B does not know the values of α, it can output a
correct private key for ID-tupleui

as follows:

By definition, the value of SKui should be SK
′

♢+mk
′

♢Pui , where symbol
′
denotes authentical

keys. Observe that:

SKui = SK
′

♢ +mk
′

♢Pui

= αP♢ + αmk♢(buiP0 −mk♢
−1P♢)

= αP♢ + αmk♢buiP0 − αmk♢mk♢
−1P♢

= αP♢ + αmk♢buiP0 − αP♢
= αmk♢buiP0

as required.
At any time, Algorithm A may query secret key on any PKaj = (IDj1, . . . , IDjtj , IDaj ) for

any PKui . Algorithm B responds to this query as follows:

1. Run the H1-Queries to obtain the appropriate tuple (ID-tupleui
,P-tupleui

,b-tupleui
,

mk-tupleui
, c-tupleui

) in H1-List.
2. Run the H1-Queries to obtain the appropriate tuple (ID-tupleaj

,P-tupleaj
,b-tupleaj

,
mk-tupleaj

, c-tupleaj
) in H1-List.

3. If caj = 1, then Algorithm B reports failure to Algorithm A and terminates the

interaction. Otherwise, we know that Paj = bajP0 −mk−1
jtj

P♢ where mk−1
jtj

is the inverse
of mkjtj modulo q.

4. Set Q-tuplej(tj−1) = (Qj1, . . . , Qj(tj−1)), where Qjk = mkjkP0 for 1 ≤ k ≤ tj − 1.
5. Set SKjtj ,ui = (Q-tuplej(tj−1),mkjtjmkuiP0 + mkjtjµ0), and SKjtj ,ui,aj =

tj∑
k=2

mkj(k−1)Pjk +mkjtjmkuiPaj +mkjtj bajµ0.

6. Return (SKjtj ,ui ,SKjtj ,ui,aj ) to A.

Observe that: Q0 = µ0 = αP0, Qjk = mkjkP0 for 1 ≤ k ≤ tj − 1, and SKjtj ,ui =
(Q-tuplej(tj−1),mkjtj (mkui + α)P0), so the root master key is α, the master key of DMjk
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is mkjk where 1 ≤ k ≤ tj , and the user master key is mkui + α. Although Algorithm B does
not know the values of α, it can output a correct attribute secret key for PKui at ID-tupleaj

as follows:

By definition, the value of SKjtj ,ui,aj should be: SK
′

j1 +
tj∑

k=2

mk
′

j(k−1)Pjk +mk
′

jtj
mk

′

ui
Paj ,

where symbol
′
denotes authentical keys. Observe that:

SKjtj ,ui,aj = SK
′

j1 +
tj∑

k=2

mk
′

j(k−1)Pjk +mk
′

jtj
mk

′

ui
Paj

= SK
′

j1 +
tj∑

k=2

mkj(k−1)Pjk +mkjtj (mkui + α)Paj

= αPj1 +
tj∑

k=2

mkj(k−1)Pjk +mkjtjmkuiPaj

+mkjtjα(bajP0 −mk−1
jtj

Pj1)

= αPj1 +
tj∑

k=2

mkj(k−1)Pjk +mkjtjmkuiPaj

+mkjtjαbajP0 −mkjtjαmk−1
jtj

Pj1

= αPj1 +
tj∑

k=2

mkj(k−1)Pjk +mkjtjmkuiPaj

+mkjtjαbajP0 − αPj1

=
tj∑

k=2

mkj(k−1)Pjk +mkjtjmkuiPaj +mkjtj bajµ0

as required.

Challenge: Once Algorithm A decides that Phase 1 is over, it outputs a recipient ID set

R = {ID1, . . . , IDn}, a DNF attribute-based access policy A =
N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij) and

two plaintext f0, f1 on which it wishes to be challenged. Algorithm B responds as follows:

1. Run the H1-Queries to obtain the appropriate tuples (ID-tupleui
,P-tupleui

,b-tupleui
,

mk-tupleui
, c-tupleui

) in H1-List, for 1 ≤ i ≤ n.
2. If cui = 0, then Algorithm B reports failure to Algorithm A and terminates the

interaction. Otherwise, we know that Pui = buiP0, for 1 ≤ i ≤ n.
3. For 1 ≤ i ≤ N : Run the H1-Queries to obtain the appropriate tuples

(ID-tupleaij
,P-tupleaij

,b-tupleaij
,mk-tupleaij

, c-tupleaij
) in H1-List.

4. If caij = 0 in either of N conjunctive clauses, then Algorithm B reports failure to
Algorithm A and terminates the interaction. Otherwise, we know that Pik = bikP0

for 2 ≤ k ≤ ti, and there are at least one attribute ai♠ with Pai♠ = mkitibai♠P0 where
1 ≤ i ≤ N . Therefore, there is at least one attribute secret key in either of conjunctive
clauses hasn’t been queried by Algorithm A in Phase 1.

5. Pick a random b ∈ {0, 1} and a random string J ∈ {0, 1}n, and give the
ciphertext CT= (A, [U0, Uu1 , . . . , Uun , U12, . . . , U1t1 , U1, . . . , UN2, . . . , UNtN , UN , V ]) =
(A, [µ2, bu1µ2, . . . , bunµ2, b12µ2, . . . , b1t1µ2, ba1♠µ2, . . . , bN2µ2, . . . , bNtNµ2, baN♠µ2, J ]).
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Note that this challenge implicitly defines: J = fb ⊕H2(ê(γµ0, P♢)). In other words:

J = fb ⊕H2(ê(γαP0, b♢P0 + βP0))
= fb ⊕H2(ê(P0, P0)

αγ(β+b♢)).

By definition, user U , whose ID belonging to R or all attribute satisfying CCi in A, can
decrypt the ciphertext using the RDecrypt algorithm under SK

′

u, or using the ADecrypt
algorithm under SK

′

iti,u
and SK

′

iti,u,ai♠
, where symbol

′
denotes authentic keys.

He computes J ⊕H2(ê(U0,SK
′

♢+mk
′

♢Pui)/ê(Q
′

♢, Uui)) to recover the file fb. Observe that:

J ⊕H2(ê(U0,SK
′

♢ +mk
′

♢Pui)/ê(Q
′

♢, Uui))
= J ⊕H2(ê(µ2, αP♢ +mk♢αPui)/ê(Q♢, buiµ2))
= J ⊕H2(ê(µ2, αP♢)ê(µ2,mk♢αPui)/ê(Q♢, buiµ2))
= J ⊕H2(ê(µ2, αP♢)ê(γP0,mk♢αPui)/ê(Q♢, buiµ2))
= J ⊕H2(ê(µ2, αP♢)ê(mk♢αP0, γPui)/ê(Q♢, buiµ2))
= J ⊕H2(ê(γP0, αP♢)ê(Q♢, buiγP0)/ê(Q♢, buiγP0))
= J ⊕H2(ê(γαP0, P♢))
= J ⊕H2(ê(γµ0, P♢)) = fb

He computes J ⊕H2(
ê(U0,SK

′
iti,u,ai♠

)

ê(mk
′
iti

mk′
uP0,Ui)

ti∏
k=2

ê(Uik,Q
′
i(k−1)

)

) to recover the file fb. Observe that:

J ⊕H2(
ê(U0,SK

′
iti,u,ai♠

)

ê(mk
′
iti

mk′
uP0,Ui)

ti∏
k=2

ê(Uik,Q
′
i(k−1)

)

)

= J ⊕H2(
ê(U0,SK

′
i1+

ti∑
k=2

mki(k−1)Pik+mkiti
(mku+α)Pai♠

)

ê(mkiti
(mku+α)P0,bai♠µ2)

ti∏
k=2

ê(Uik,Q
′
i(k−1)

)

)

= J ⊕H2(
ê(γP0,αP1)

ti∏
k=2

ê(Uik,Q
′
i(k−1))e(γP0,mkiti

(mku+α)Pai♠ )

ê(mkiti
(mku+α)P0,bai♠γP0)

ti∏
k=2

ê(Uik
,Q

′
i(k−1)

)

)

= J ⊕H2(
ê(γP0,αP1)e(γP0,mkiti

(mku+α)Pai♠ )

ê(γP0,mkiti
(mku+α)Pai♠ ) )

= J ⊕H2(ê(γP0, αPi1)
= J ⊕H2(ê(γµ0, P♢) = fb

Hence, CT is a valid ciphertext for fb, as required.

Phase 2. Algorithm A can continue issuing more private key queries other than ID-tupleui
,

. . . , ID-tupleun
, and attribute secret key queries other than ID-tuplea1♠

, . . . , ID-tupleaN♠
.

Algorithm B responds as in Phase 1.

Guess: Algorithm A outputs its guess b
′ ∈ {0, 1} for b. At this point, Algorithm B picks a

random pair (Ti, Vi) from H2-List, and outputs Ti/ê(µ0, µ2)
b♢ as the solution to D.

To complete the proof of Theorem A.1, we now show that Algorithm B correctly outputs
D with the probability at least 2ϵNNnn/qH2e

N+n(qE2 +N)N (qE1 + n)n. In the first place,
we calculate the probability that Algorithm B does not abort during the simulation. Suppose
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AlgorithmAmakes a total of qE1 private key queries and qE2 attribute secret key queries. Then,
the probability that Algorithm B does not abort in Phase 1 or 2 is δ

qE1
1 δ

qE2
2 . And the probability

that it does not abort during the challenge step is (1−δ1)
n(1−δ2)

N . Therefore, the probability
that Algorithm B does not abort during the simulation is δ

qE1
1 δ

qE2
2 (1 − δ1)

n(1 − δ2)
N . These

values are maximized at δopt1 = 1−n/(qE1+n), and δopt2 = 1−N/(qE2+N). Using δopt1 and δopt2 ,
the probability that Algorithm B does not abort is at least (N/e(qE2 +N))N (n/e(qE1 + n))n.

In the second place, we calculate the probability that Algorithm B outputs the correct result
in case that Algorithm B does not abort. Let Q be the event that Algorithm A issues a query
for V . If ¬Q, we know that the decryption of the ciphertext is independent of Algorithm
A’s view. Let Pr[b = b

′
] be the probability that Algorithm A outputs the correct result,

therefore, in the real attack Pr[b = b
′ |¬Q] = 1/2. Since Algorithm A has the advantage ϵ,

|Pr[b = b
′ |¬Q]− 1/2| ≥ ϵ. According to the following formulae, we know Pr[Q] ≥ 2ϵ.

Pr[b = b
′
] = Pr[b = b

′ |¬Q]Pr[¬Q]

+ Pr[b = b
′ |Q]Pr[Q]

≤ 1/2Pr[¬Q] + Pr[Q]
= 1/2 + 1/2Pr[Q]

Pr[b = b
′
] ≥ Pr[b = b

′ |¬Q]Pr[¬Q]
= 1/2Pr[¬Q]
= 1/2− 1/2Pr[Q]

Therefore, we have that Pr[Q] ≥ 2ϵ in the real attack. Now we know that Algorithm A
will issue a query for V with the probability at least 2ϵ. That is to say, the probability that
V appears in some pair on H2-List is at least 2ϵ. Algorithm B will choose the correct pair
with the probability at least 1/qH2 , thus Algorithm B produces the correct answer with the
probability at least 2ϵ/qH2 . Since Algorithm B does not abort with the probability at least
(N/e(qE2 +N))N (n/e(qE1 + n))n, we see that Algorithm B’s success probability is at least
ϵ′ = 2ϵNNnn/qH2e

N+n(qE2 +N)N (qE1 + n)n. �
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